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Statistical properties of passive tracers in a positive four-point vortex model
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Stochastic properties of systems formed by many passive particles conducted by four point vortices, each
one with positive circulation, are investigated. A statistigéltest is developed in order to study the spatial
distribution of particles in the chaotic background, &0). The fact that the uniform distribution is an
invariant measure of the spatial distribution of particles is used to debug’ttest. This procedure is applied
in the same conditions as described in Babiahal. in order to study the uniformity of passive particles. It is
observed that uniformity is not attained up to times of ordérrdtural time unity, when either a Gaussian or
a uniform initial distribution is considered in a small region away from the vortices.

PACS numbsd(s): 47.11+j, 02.70.Lq, 47.27.Qb

I. INTRODUCTION IIl. MATHEMATICAL FRAMEWORK

The advection of a passive tracer in a hydrodynamical The two-dimensional Euler equation reads
flow is an important issue in oceanography and atmospheric o+ wV 20)=0 3
physics[1—4]. The Eulerian and Lagrangian approaches of o, ©)=0, ®
hydrodynamic problems are strictly connected by the ordi

‘wherew= w(t;X,y) denotes the vorticity field] is the two-
nary differential equatiof5]: o=w(tx.y) y field)

dimensional Jacobian, and 2 stands for the inverse of the
: two-dimensional Laplacian. It is known that E) pos-
X=V(x,1), (1) sesses singular solutions of the fof6q

supplemented by a given initial conditic(0). Here,v(x,t) N
is the Eulerian velocity field and is the position of a fluid o(t;X,y)= 2 Koo X=X, ()][y—Y.(D)]. 4
particle (Lagrangian point of view The dynamics of the a=1

Eulerian velocity field, governed by the Navier-Stokes or . .
Euler equations, usually is reduced, after a Galerkin trunca-€re; 9(®) denotes the Dirad function, (x4(t),ya(t)) rep-

tion, to a system of coupled nonlinear differential equations’©S€Nts @ point vortex in the unbounded plan with circulation
k., andN is the total number of point vortices, and their

time evolution has the following Hamiltonian structure:

V=F(v,1), )
] ] ] ] . JH
which represents the time evolution of the Fourier compo- kaxazﬁ,
nents list v={Vi}y<x__ of the velocity field v(xt) “
=3 73V €%* The Lyapunov exponents associated with . aH
Egs.(1) and(2) are, respectively, known as the Lagrangian KaYa= =77 5

and Eulerian Lyapunov exponents. Denote thenibyand
Ag. The cases corresponding X9>0 (A\g>0) are Known  \yhere the Hamiltoniam is given by
as Lagrangian(Euleriar) chaoticity. These two kinds of

chaoticity are disconnected and they are studiefd ]n(See H=H(Xq, .« XniY1s - o YN
also[4].)
Our goal is to investigate the distribution of passive trac- 1 X ) )
ers advected by the point vortices of the two-dimensional = 8n > KokgIN[(X,=Xg)2+ (Vo= Yp)?l.  (6)
Euler equation in the region, >0 [1]. ap=1

This Brief Report is organized as follows. In Sec. Il we
describe the mathematical setup. In Sec. Ill we report théntroducing thecomplexpoint vortex (= —1):
results of numerical experiments performed on systems
formed by many passive particles conductedNby 4 point Z,(1) =X, (1) +iy (1), !
vortices, each one with positive circulation. An Appendix is
added at the end, which includes the main idea of the statisfter some straightforward calculation, one can show that Eq.
tical method that has been used. (5) is equivalent to theomplexequations:
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where the symbol * denotes complex conjugation. 10°
By definition, a passive tracer is a point vortex with zero  1¢™
circulation. Ergo, the equation for a passively advected trace& , -«
z(t)=x(t) +iy(t), initially located atz(0), anddriven by the 8
vortices defined by Eq8) is glo
107
N
o= 1 Kg ©) 107
2i B=1 Z—Zﬁ. 1072
10°% ]
IIl. SIMULATION RUNS AND RESULTS 107 ‘ ‘ . s
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This paper reports the results of numerical experiments time t (T)

performed on systems formed by many passive particles con- N _ )

ducted by four-point vortices, each one with positive circu- FIG. 1. Probability of overcrossing the observed distance ac-
lation. Equations(8) and (9) have been integrated by a cording to they? distribution. Uniform initial distribution in a small
fourth-order Runge-Kutta method with time stept=5 square: long dashed line. Gaussian initial distribution around the
«10°3 n.tu. (natural time unity. In order to perform this point (8,8): dotted line. The dashed line validates tifetest.

study, three different simulations were run, each one using a

set of 10 particles advected by a four-point vortex originally that there are no reasons to reject the hypothesis that the
situated at points (B),(0,5), (- 5,0),(1—4). All these vor- uniform distribution of the particles is not changed with
tices have circulation equal to 10. time. . . .

In the first two experiments, particles were generated In conclusion, we have performed computational simula-

away from the vortices, using either Gaussian or a unifornfions on systems formed by 1passive particles advected by
distribution in a small square of the form the action of four vortices. Our goal was to get indications

about the statistical distribution that a naive visual inspection
[Cx— €yt el X[cy—€;Cy+ €], (10) of the figures plotted in Babianet al. [1] suggests to be
uniform. We conclude that, if uniformity is to be achieved, it
with (c4,cy)=(8,8) ande=1/5. In the third experiment, par- will take a very long time.
ticles were generated uniformly in the circular spot observed
as described by Be_lblaruj al. [_1]. Itis _weII k_nowr_1 from the ACKNOWLEDGMENTS
literature that a uniform distribution is an invariant measure
of this dynamics. This fact is used to test the procedure de- The work of S.G. was partially supported by FCT—
scribed in this paper. FMRH/BSAB/131/99. The authors acknowledge C.

As it is expected, in all experiments one observes that thdlachado for a critical reading of this manuscript.
particles spread in eircular spot surrounding the four regu-
lar islands { | =0). Our purpose is to find out whether these
particles could be considered uniformly distributed or not on
the chaotic background defined hy>0. This is a well-known test from the statisticians—3$8&¢

A statistical y? test has been applied to this spot exclud-for instance, for the one-dimensional version. A two-
ing the regular islands, =0. In order to perform this test, a dimensional version of the test will be the content of this
set of small circles with radius 0.6n length natural unifs  appendix, since the problem under study corresponds to a
was generated randomly inside the spot. The statistical test garticular situation that, as far as we know, has not been
based on the difference between a theoretically uniform diseonsidered in the literature and is not well covered by meth-
tribution in the small circles and the simulated distributionods like those described [19]. However, the idea of thg?

(the situation observedby means of the computation of a goodness of fit test that we present here is the same.
distanced and the probability that this distance takes large The region of the plane where the patrticles evolve, let us
values(see the Appendix The results given by this test at denote it byR, is considered in the test. Given the possible
different times between=2x10° andt=10° n.t.u., with  complexity of the configuration of this region we considered
time step equal to 210% in terms of the probability of that the islands created by the vortices were approximately
overcrossing the observed distance, are plotted in Fig. 1 in eircular shaped. Then, under the assumption that the distri-
linear-logarithmic scale. bution of particles is uniform, considering a total Mfpar-

The results of the/? test are the following: in the first two ticles in R, if m circles are generated in this regigwith
experiments, the uniformity of the distributions of the par-random centejsthe number of particles that fall inside each
ticles, in the condition mentioned above, was not achievegircle should be proportional to the area of the circle inter-
up tot=10 n.t.u., as illustrated in Fig. quniform distribu-  cepted with the regioR. Thus, a sample of circles can be
tion, long dashed line; Gaussian distribution, dotted)I[7é. generated and its interceptions with the regiyrdenoted by
The third experiment is plotted in dashed line, which tells usC;, i=1,2,...m, are considered in the test. if, is the

APPENDIX: THE x? TEST
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number of particles in the small subregi@, n,,., is the m —Np,)?
number of particles that fall outside all subregio@s, p; E N ,
=area(C;)/areaR), for i=12,...m and pn:1=1 =1 Pi
=iL1pi, then we consider should be approximately a realization of )@ distributed
mel random variable witrm—1 degrees of freedom, if one as-
d= Z —Np)? sumes that the center and radiusPoas well as the islands
= NpI are known. According to this argument, the assumption of

uniformity for the distribution of the particles in the fixed
the square distance between the families);(and (Np;); regionR will be rejected if the distance obtained in the simu-
with i=1,2, ... m+1. If the uniformity of the distribution lation is greater than the critical value. Otherwise, we will
in the regionR is true, thend should be approximately a accept the uniformity hypothesis.
realization of ay? distributed random variable witt de- In analogy to the conventional statistical goodness-of-fit
grees of freedom, if one assumes that the center and radius of test, the adoption of very small circles should be avoided.
R as well as the islands are known. This argument enableSor this reason, only subregions whéd@,=5 will be con-
the construction of a hypothesis testydftype. The assump-  sidered.
tion of uniformity for the distribution of the particles in the  In order to verify the behavior of the test described above,
fixed regionR will be rejected, if the distance obtained in the 1000 samples have been simulated in the reamith the
simulation is greater than the critical value, that is, the probsame parameters as defined by our problem and the same
ability of overcrossing the observed distance is, in that caseyumber of particles, 10 000, using a uniform distribution on
very small. Otherwise, we will accept the uniformity hypoth- R. The square distanathas been computed for each simu-
esis. lation and it has been verified that the valuesiafo fit a y?

In the work presented in this Brief Report, a slightly dif- distribution withm—1 degrees of freedom. The type-I error
ferent version of this test has been adopted, in order to reof the test, i.e., the probability of making the wrong decision
duce complexity of the computations. The modification is asn rejecting the uniformity hypothesis when the uniformity is
follows. If n; is the number of particles in the small subre- a fact, is controlled and the 5% significance level is attained.
gion C;, and N is the total number of particles captured Investigation of the type-Il error, i.e., the probability of mak-
inside all subregion€;, andp;=area C;)/area R), for i ing the wrong decision in accepting uniformity when it does
=1,2,...m, then it would be reasonable to assume that thenot correspond to reality, was conducted, letting us believe
square distance between the families){ and (Np;); where that this error behaves well enough. Due to the complexity of
i=1,2,...m, the regionR, we did not go further in this line of study.
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